Trending

Answers

  • 0
  • 0

What exactly is graphene?

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Risk aversion plunged on the positive news of the Russia-Ukraine talks. After several days of rising oil prices, the price of precious metals continued to fall. Domestic futures markets remain stable for the time being.

Back in international markets, WTI crude futures briefly dipped below $100 a barrel, while Brent crude hit its lowest intraday level in nearly two weeks. Spot gold briefly fell below $1,900 an ounce. Comex gold futures closed down 1.1 percent at $1,918.4 an ounce. Comex silver futures closed down 1.14 percent at $24.91 an ounce. "Recently, crude oil prices have been extremely sensitive to changes in geopolitical news." Traders believe that the current oil price is still in the broad impact, Ukraine will still be a premium in the case, although the market further decline, but should not be too pessimistic, it is recommended to wait and see for the time being. The Ukrainian premium is still there and there will be some volatility in the graphene market.

Graphene was the first material ever discovered to consist of a single layer of atoms. The carbon atoms are connected in a hexagonal grid. The graphite used in pencil is equivalent to the stacking of countless graphene layers, and the carbon nanotube is the graphene rolled into a tube.

The relationship between graphite, graphene, carbon nanotubes, and spherule. Due to the properties of the chemical bonds between carbon atoms, graphene is very tough: it can be bent to large angles without breaking and withstand high pressures. And because there is only one layer of atoms, the movement of electrons is confined to a plane, giving it entirely new electrical properties. Graphene is transparent in visible light but not breathable. These characteristics make it ideal as a raw material for protective layers and transparent electronics.

But what is suitable is suitable, and it is not that fast.

One of the problems: is the preparation method.

Many studies have shown us graphene's unique features, but there's a catch. These beautiful properties place very high demands on sample quality. To obtain graphene samples with the best electrical and mechanical properties, the most time-consuming, labor-intensive, and expensive method is required: the mechanical peeling method - tape is attached to the graphite, and the graphene is peeled off by hand.

Don't laugh; this is how Novoselov and the others prepared graphene in 2004.

Graphite, graphene, and tape were donated by Novoselov's team to Stockholm. The signature "Andre Geim" on the tape is the Nobel Prize winner with Novoselov.

Although the required equipment and technical content seem to be very low, the problem is that the success rate is lower. Is it okay to get some samples for research and industrial production? Joke. In terms of industrialization, this method is useless. Even if you master the graphite mines in the world, you can peel off a few pieces a day...

Of course, now we have many other ways to increase productivity and reduce costs - the trouble is that the quality of these products has dropped again. We have liquid phase exfoliation: put graphite or similar carbonaceous material in a liquid with super high surface tension, and blast the graphene snowflakes off with ultrasonic bombardment. We have chemical vapor deposition: a carbon-containing gas is allowed to condense on the copper surface, and the resulting thin layer of graphene is peeled off. We also have a direct growth method, where we try to grow a layer of graphene directly between two layers of silicon. There are also chemical redox methods, which separate graphite sheets by inserting oxygen atoms. There are many methods, and each has its scope of application, but so far, there is no technology that is suitable for industrialized large-scale production.

1651110497837532.jpg

Why can't these methods make high-quality graphene? For example. While the central part of the graphene sheet is a perfect six-membered ring, the edge parts tend to be disrupted into five- or seven-membered rings. This may not seem like a big deal, but a "slice" of graphene produced by chemical vapor deposition is not really a complete one grown from one point. It is actually a "polycrystalline" produced by the simultaneous growth of multiple points, and there is no way to ensure that the small pieces grown from these multiple points can be completely aligned. As a result, these deformed rings are not only distributed on edge but also exist inside each "piece" of graphene, which becomes a structural weakness and is easy to break. To make matters worse, this breaking point in graphene is not self-healing like polycrystalline metals and is likely to go all the way. The result is that the strength of the entire graphene is halved. Materials are a tricky area, and it's not impossible to have both, but it's certainly not that fast.

The second problem: is electrical performance.

A promising direction for graphene is in display devices - touchscreens, e-paper, etc. But at present, the contact point resistance of graphene and metal electrodes is difficult to deal with. Novoselov estimates the problem can be solved within a decade.

But why can't we just ditch the metal and use graphene? This is its deadliest problem in the field of electronics. Modern electronics are all built on semiconductor transistors, which have a key property called a "bandgap": the interval between an electron's conducting and non-conducting energy bands. It is precise because of this interval that the flow of current can be asymmetric, and the circuit can have two states: on and off. However, the electrical conductivity of graphene is so good that it does not have this bandgap and can only be turned on and off. . Only wires without logic circuits are useless. So to create future electronics with graphene, replacing silicon-based transistors, we have to artificially implant a bandgap—but simply implanting graphene loses its unique properties. There is indeed a lot of research in this field: multilayer composites, adding other elements, changing the structure, etc.; but Novoselov and others believe that it will take at least ten years to solve this problem.

The third issue is environmental risks.

The graphene industry also has unexpected trouble: pollution. One of the most mature products in the graphene industry may be the so-called "graphene oxide nanoparticles," which are very cheap. Although they cannot be used in high-end fields such as batteries and bendable touch screens, they are pretty good for electronic paper and other uses; But this thing is likely to be toxic to humans. It doesn't matter if it is poisonous; as long as it stays in electronic products, there is no problem; but not long ago, researchers found that it is very stable and easy to spread in surface water. While it's too early to make any assertion about its environmental impact, it's a potential problem.

High-quality graphene supplier

Luoyang Moon & Star New Energy Technology Co., LTD, founded on October 17, 2008, is a high-tech enterprise committed to developing, producing, processing, selling, and technical services of lithium-ion battery anode materials. After more than 10 years of development, the company has gradually developed into a diversified product structure with natural graphite, artificial graphite, composite graphite, intermediate phase, and other negative materials (silicon-carbon materials, etc.). The products are widely used in high-end lithium-ion digital power and energy storage batteries. If you are looking for Lithium battery anode material, click on the needed products and send us an inquiry:sales@graphite-corp.com.

 


Southern Copper Corp (SCCO.N) recently said its Peruvian mine remained closed after a six-week standoff with protesters and blamed the Peruvian government for failing to intervene in the safety of its 1,300 workers and their families.  

The company said in a statement that a recent agreement to end protests at the Cuajone mine required the company to withdraw complaints against protest leaders because railways transporting minerals and supplies remained blocked. Production has been suspended since the end of February.  

Peru's Energy Ministry said in a separate statement that it had also reached an agreement with Southern Copper to start talks to find common ground with local communities.  

"If we shut down for a year, the government will stop receiving more than 3.1 billion soles ($830 million) in taxes and royalties, and 8,000 direct and indirect jobs will be lost. This is what we want to avoid, "Southern Copper added in the statement.

Peru has faced a wave of protests from indigenous communities, who accuse mining companies of not providing enough jobs and funding to poor local residents.  

Central bank officials said last week that protests against copper mines such as MMG's Las Bambas and Southern Copper's Cuajone were dragging down the economy.  

Peru is the world's second-largest copper producer and mining is an important source of tax revenue for the country. It is estimated that the supply and prices of the graphene will be influenced by that.

Inquiry us

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity 3D Printing Nickel Alloy IN718 Powder

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity 3D Printing Alloy CoCrW Powder

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Magnesium Diboride MgB2 Powder CAS 12007-25-9, 99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

Our Latest Products

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electrical, electronics, energy and petrochemical sector…

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Tungsten-nickel-copper/iron alloy is characterized by low thermal expansion, high density, radiation absorption and high thermal and electrical conductivity. It is widely utilized in the aerospace and medical industries. About High Density Tungsten…

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

Antimony sulfide can be used to make matches, fireworks and colored glass. It is used in rubber manufacturing as a military and vulcanizing agent.Particle size: 100mesh Purity: 99.99% Antimony Sulfide Sb2S3: Sulfide can be bismuth or black powder…