High Purity Lithium Nitride Li3N Powder CAS 26134-62-3, 99.99%
Lithium nitride, a metal nitrogen, has the chemical formula Li3N. This solid is purple or red and shows a light green glow when lit by reflected light. Purity: 99.99%
Particle Size: 100 mesh
Lithium Nitride Li3N: Powder Description
Li3N is a compound name.
It is a good idea to use a bilingual translator
Lithium Nitride
The following are some examples of how to use
Trilithium nitride
. Lithium nitride has a high conductivity and is a fast-ionic conductor. Many studies have concentrated on the application.
Compound of lithium nitride
Solid cathode or electrode for batteries.
What is Li3N called in the correct terminology?
Lithium nitride, or Li3N is the correct name.
Formulation of lithium nitride
It is called Li3N.
As a fast-ion conductor, the material should have a high decomposition voltage and a lower electronic conductivity. However, it must also have a higher ionic conducting capacity, as well as better chemical stability.
Does Lithium Nitride Burn in the Air?
Uniquely, lithium reacts also with nitrogen in the atmosphere to form a compound called lithium nitride. If heated in the atmosphere, Lithium produces a strong red flame. Lithium also reacts with nitrogen in the atmosphere to produce lithium nitride. The above characteristics are found in many of the lithium fast-ion conducting materials. They can then be used to make all-solid-state battery with high performance for calculators and other electronic devices, such as electronic watches and camera flashes.
What type of bonding is lithium nitride made up of?
Lithium Nitride Li3N: Ionic bond.
Li3N is it covalent or ionic?
Lithium Nitride is a cationic compound. Li's electronegativity is 0.98 while nitrogen's value is 3.04. Many people have imagined building large energy storage (electrical) reactors using lithium fast ion conducting materials. Electricity can be stored in energy storage stations when peak consumption occurs late at night. During times of peak consumption, power should be continuously supplied to the grid. The wide application possibilities of lithium-fixed ion conductors have attracted a lot of interest. To find better lithium-fixed-ion conductors people have carried out extensive and detailed research.
It is a global trusted brand
Suppliers of Lithium Nitride
. Please send us an inquiry regarding the latest
Lithium Nitride price
At any time.
How is Lithium Nitride Li3N produced?
It was discovered by the end of 19th century. Lithium Nitride can be made easily with a mixture of elements. Zintl und Brauer discovered the hexagonal structure in lithium nitride for the first time in 1935. It is 2 is
Charge of lithium Nitride
. In 1976 Rabenau, and Schultz defined this structure by using single-crystal-X-ray-diffraction.
Research on the reactions between lithium nitride (Li3NH4) and hydrogen started in the early twentieth century. Dafert und Miklauz discovered at 220-250degC that lithium nitride, hydrogen, and a substance called "Li3NH4" are formed. Continue heating the substance to decompose into "Li3NH2". They then add hydrogen and higher temperatures (> 700degC). Ruff, Georges and them discovered later that the "Li3NH4" substance was Li2NH+ LiH and the "Li3NH2", LiNH2+ 2 LiH.
In many areas, lithium nitride can be found today. The ionization model can explain Li3N's catalytic action under high temperatures and normal pressures. It also explains its role as a nitrogen source in solvothermal methods.
Li3N is prepared by reacting Li2 with N2 at a temperature of 500degC. It is a catalyst that can be used to synthesize cBN under high pressure and at high temperatures. It can also act as a catalyst for the formation of hBN at normal pressure and temperature.
Lithium Nitride Li3N Applications:
Lithium Nitride comes in a brownish red solid, or as a powder. It is used in reducing agents.
What is the purpose of lithium nitride?
Lithium nitride is useful in many fields.
1. Solid electrolyte
Lithium nitride has a higher conductivity than other inorganic sodium salts. The application of lithium as a cathode and solid electrode material in batteries has been the focus of many studies.
It is important that the material used to make fast ion conductors has higher decomposition, lower electronic conductivity (and therefore better chemical stability), higher ionic and higher ionic conducting properties. The above characteristics are found in many lithium fast-ion conducting materials. They can be used for the production of solid-state batteries that have high performance.
People used to imagine using lithium fast ion materials for large energy storage reactors (electric). Electricity can be stored in energy storage stations when peak consumption hours are late at nights. During peak periods of electricity consumption, the grid is continually supplied with power. The wide application possibilities of lithium fixed-ion conductors have generated a lot of interest. To find better lithium-fixed ion conductors people have carried out extensive and detailed research.
2. Preparation for cubic boron Nitride
Lithium nitride has many uses, including as an electrolyte. It is also a catalyst that can convert hexagonal Boron Nitride into cubic Boron Nitride.
In 1987 Japanese scientists obtained an N-type crystal of cBN with a diameter 2 mm, an irregular shape. Then, they grew an Be-doped P type single crystal onto it. By cutting and grinding the secondary high-pressure single crystal cBN on the surface of the crystal, the uniform PN junction cBN is obtained.
China has also conducted similar synthesis experiments. The experiment took place on the domestic DS029B top press with six sides. To study the effect on the shape of the cBN samples synthesized in high pressure using lithium nitride and lithium hydride as catalysts, this experiment used hBN that was 99% pure as the starting material. hBN with a purity of 99% was used as a starting material, along with a commercially-available lithium amide LiNH2 additve.
As an addition to these experiments, using the phase change method and hexagonal boran nitride, a cubic boron-nitride has been synthesized with different additives. X-ray diffraction and Raman diffraction technologies were used. It is possible to conclude, after analyzing and characterizing the experimental products that the different additives will have different effects on a system.
3. Layer of organic light-emitting devices with an electron injection layer
The organic light-emitting device (OLED) has a solid-state active light emitter, wide viewing angles, fast response times (1ms), and wide temperature ranges (-45 to+85). Flexible substrates can also be manufactured. High power consumption and low power unit consumption are considered by the industry to be the benefits of the next generation of mainstream display and illumination technologies. OLED performance has improved significantly with the application of new organic materials and organic device structures.
In order to improve OLED device performance, Lithium Nitride (Li3N), a n-type nitride, is added as a dopant into the eight-hydroxyquinoline (Alq3) layers of aluminum. Li 3N has been reported for electron injection layers and cathodes. A buffer layer can improve the performance. During evaporation Li3N is decomposed into Li2 and N2. N2 is not harmful to the device's performance and only Li can be used for deposition. Experiments have shown that an Alq3 doped with Li3N layer can be effectively used as an electron-injection layer to improve the OLED efficiency and reduce its operating voltage.
Lithium Nitride Li3N Product Performance:
Our lithium nitride is high-purity, ultrafine particles size and larger surface area.
Technical Data for Lithium Nitride Li3N:
Part Name
|
High Purity Nitride Powder
|
MF
|
Li3N
|
Purity
|
99.99%
|
Particle Size
|
-100 mesh
|
Useful Information
|
It is used as a catalyst, or raw material for organic synthesis.
|
Specification of Lithium Nitride Li3N:
Lithium Nitride Li3N : Packaging & Shipping
The amount of Li3N powder in the packaging will determine which type we use.
Lithium nitride powder Li3N:
Vacuum packaging 100g,500g or 1kg/bag or 25kg/barrel or your request.
Lithium nitride powder Li3N shipping
Upon receipt of payment, goods can be shipped by air, sea, or express as soon as practicable.
Technology Co. Ltd., () is an established global chemical material manufacturer and supplier with over 12 years' experience in the production of high-quality nanomaterials. These include boride powders, nitride particles, graphite particles, sulfide particles, 3D-printing powders, etc.
Contact us today to receive a quote for our high-quality Lithium Nitride Powder. (
brad@ihpa.net
)
Properties Lithium Nitride
|
Alternative Names
|
Li3N, trilithium, nitride powder
|
CAS Number
|
26134-62-3
|
Compound Formula
|
Li3N
|
Molecular Mass
|
36.8456
|
Appearance
|
Purple or red powder
|
Melting Point
|
N/A
|
Boiling Point
|
N/A
|
Density
|
1.3 g/cm3
|
Solubility In H2O
|
N/A
|
Exact Mass
|
37.0667
|
|
|
|
|
Lithium Nitride Health & Safety Information
|
Sign Word
|
Danger
|
Hazard Statements
|
H260-H314
|
Hazard Codes
|
F. C.
|
Risk Codes
|
11-14-29-34
|
Safety Declarations
|
16-22-26-27-36/37/39-45
|
Transport Information
|
UN 2806 4.3/PG 1,
|
Inquiry us