Scientists Use 3D Printing to Print Non-magnetic Metal Powders into Magnetic Alloys
If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net
Sweden is in talks with Turkey on joining NATO and looks forward to strengthening cooperation with Turkey in security and counter-terrorism, Swedish Prime Minister Anders Andersson said recently.
Andersson held a joint press conference with visiting European Council President Michel in Stockholm on the same day. Andersson said Sweden is in dialogue with Turkey on joining the TREATY and looks forward to strengthening bilateral relations with Turkey, including cooperation in the areas of security and counter-terrorism. She said Sweden would study a number of issues raised by Turkey.
Speaking at a news conference, Mr. Michel said he believed the Swedish government was taking positive action and taking the necessary steps to reach a solution.
Sweden and Finland formally submitted their applications to NATO Secretary-General Jens Stoltenberg a few days ago. According to protocol, NATO must admit new members by the "unanimous consent" of 30 members.
Turkish Foreign Minister Mevlut Cavusoglu said His country would agree to start NATO talks with Sweden and Finland only if they reach written agreements to stop supporting terrorism and lift restrictions on exporting defense equipment to Turkey, Turkish media reported.
Affected by the ever-changing international situation, the supply and prices of international bulk 3D printing metal powder are still very uncertain.
Scientists at Skoltech University in Russia used a 3D printer to create an alloy of two materials whose composition ratios varied from one region of the sample to the next, and the resulting alloy had gradient magnetism, even though none of the initial materials were magnetic.
3D printing, a rapid prototyping method, is maturing for aircraft parts, medical implants and prosthetics, jewelry, custom shoes, and more.
The main advantage of 3D printing is the ability to create objects with very complex shapes that are either too expensive to produce or completely impossible to produce using traditional casting, rolling, stamping, or machining methods. 3D printing speeds up prototyping time and offers greater flexibility in product personalization and the number of batches. Another significant advantage of 3D printing is its low waste.
However, 3D printing has its limitations, requiring objects to be made entirely of homogeneous materials or mixtures. If the composition is different in different parts of the product, it is possible to obtain samples with changing characteristics. For example, A bar made of an alloy of two metals has A variable ratio of composition: one end starts with 100 percent of metal A, then 50 percent of each, then 100 percent of metal B, and so on. Thus, the properties of the obtained materials (including magnetic materials) can vary in a gradient, which makes them potentially useful for the manufacture of motor rotors, magnetic encoder strips, transformers, etc.
Skoltech scientists have researched and made such a kind of material, with the original ingredients A and B being two alloys: aluminum-bronze (copper, aluminum, and iron) and austenitic stainless steel (iron, chromium, and nickel, among others). Both alloys are paramagnetic, which means they are not attracted by magnets. But if you mix them, you get what's called a "soft magnetic material" ferromagnet, which is attracted to a permanent magnet.
The researchers used the two paramagnetic materials to create a gradient alloy. They used an InssTekMX-1000 3D printer, which works by depositing material using directional energy action, feeding a powdery material, and melting it with a laser at the same time. The resulting materials exhibit varying degrees of ferromagnetic properties, depending on the proportions of the components.
The researchers also theorized that the atomic structure of the alloy contributes to the expression of ferromagnetism in the alloy: although both materials have so-called face-centered cubic crystal structures, the combination results in a magnetic body-centered cubic structure.
Gradient soft magnetic alloys can be used in mechanical engineering, for example, in the production of electric motors. The results also show that the method of surface treatment of materials using directional energy action can not only obtain gradient materials using 3D printing but also discover new alloys. The technology is efficient and suitable for the rapid production of large parts.
3D Printing powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest 3D printing powder price, you can send us your inquiry for a quote. ([email protected])
3D Printing powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality 3D printing powder, please feel free to contact us and send an inquiry. ([email protected])
Commodities such as crude oil, wheat, cotton, and nickel have rallied since Russia's "special military operations" began in late February. On the last trading day of this quarter, commodities were on track for their biggest gain since 1990. For this reason, it is expected that the price of the 3D printing metal powder will continue to increase.
Inquiry us